
.!OWKNAL OF COMPUTATIONAL PHYSICS 40, 167-182 (1981) 

n Solving the Stiff ODE’s of the Kinetics of 
Chemically Reacting Gas Flow* 

ILKKA KARASALO AND JOHN KURYLO 

Lawrence Berkeley Laboratory, Unioersity of California: Berkeley, California 94720 

Received October 22, 1979; revised February 22, 1980 

We study the efficiency of computational methods for the stiff ordinary differential 
equations of chemical kinetics that arise when the partial differential equations of chemically 
reacting gas flow are treated by a fractional step technique. In this application, the overhead 
work associated with evaluating partial derivatives and decomposing matrices for the Newton- 
like corrector iterations used in most algorithms for stiff ODE’s can be eliminated for the 
most part by keeping in store a small number of suitably chosen copies of the Jacobian 
matrix. reduced to Hessenberg form to facilitate changes of stepsize and order. Computational 
results in the case of ignition and propagation of a one-dimensional, premixed laminar flame 
with different realistic chemical kinetic models are presented to show the reduction of 
computational work obtained by modifying a modern general-purpose ODE-code in this 
manner. 

1. INTR~DUC~~N AND SUMMARY 

Operator splitting, or fractional step, techniques [26! are used frequently for the 
numerical simulation of the flow of multicomponent gas mixtures undergoing rapid 
chemical reactions such as flame ignition and flame propagation [ 15, 16, 5 9 1. 
Reasons for the popularity of operator splitting techniques for this class of problems 
include the following: First, they often offer a reasonable compromise between on one 
hand the poor storage economy of fully coupled implicit schemes, in particular for 
problems with multidimensional geometry, and on the other the unacceptably small 
timesteps needed for stability by explicit schemes. Second, their generally low or 
of accuracy are acceptable since the accuracy requirements are in practice rather 
moderate. Third, they provide a straightforward way of treating different parts of the 
governing system of partial differential equations by different numerical methods and 
are easy to implement using standard software for the different fractional steps as 
building blocks. 

In this paper we assume that an operator splitting technique is being applied on the 
equations of reacting gas flow (see Ref. 12.5, pp. 2-91) in such a way that, in 
particular, heat release and species production due to chemical reactions are 
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computed in a separate fractional “chemistry step.” Then, if a detailed model of the 
chemical kinetics is used, the number of species and reaction steps are likely to be 
such that the by far dominating portion of the total computational effort is consumed 
by such chemistry steps. Thus, effective numerical treatment of the chemistry steps is 
of first-order importance for the overall computational economy of the fractional step 
algorithm, very much regardless of the choice of numerical methods for other frac- 
tional steps. 

In the chemistry step the values of the temperature and the concentrations of the 
reacting species are advanced by solving, for each spatial grid point, an initial value 
problem for a system of nonlinear ordinary differential equations over a time interval 
equal to the length of the fractional step. Since this time interval generally exceeds by 
several orders of magnitude the time constants associated with the most rapidly 
changing particular solutions of the system of ordinary differential equations, the 
initial value problems must be treated by methods suitable for “stiff’ ordinary 
differential equations. Straightforward use of a general purpose algorithm for stiff 
initial value problems would, however, be far from optimal for the following reasons 
(see also Ref. [ 18, pp. 14-151): First, a substantial portion of the computational work 
would consist of evaluating the Jacobian matrices needed for solving the nonlinear 
equations arising from the implicit discretization formulas used by the stiff ODE 
solver. Because initial values and parameters of the ODE’s generally vary smoothly 
in space and because approximately the same set of initial value problems-slightly 
displaced in space-is solved in adjacent chemistry steps, much of this work is likely 
to be redundant. Second, as a consequence of the operator splitting, initial rapid tran- 
sients occur generally at each spatial grid point and each chemistry step. As a rule, 
these lead to several changes of step size and possibly order during each ODE 
integration. Most such changes require a redecomposition of the iteration matrix and 
hence are rather costly at the matrix sizes of interest if standard LU-decomposition 
techniques are used. Third, even though the exact solutions to the ODE’s may be 
shown to remain positive at all times [3], a general purpose algorithm is likely to 
introduce negative species concentration values at some point because of rounding 
and truncation errors. Since particular solutions with sufficiently large negative 
concentration values may become unstable, the algorithm may therefore fail unless 
the local error bound is chosen smaller than required for sufficient global accuracy. 

Our purpose is to show by computational experiment that the above drawbacks in 
the treatment of the chemistry steps can largely be eliminated by making some rather 
simple modifications of the general purpose stiff ODE solver being used. In summary, 
these modifications are as follows: First, keeping in store a small number of suitably 
chosen copies of the Jacobian matrix, reduced to Hessenberg form to facilitate 
changes of stepsize and order, and reusing these copies until corrector convergence 
becomes slow. Second, allowing step size and order to vary more frequently because 
step/order changes are now comparatively cheap. Third, keeping concentration values 
non-negative during prediction and corrector iterations. 

We use as a test case the ignition and propagation of a one-dimensional, premixed, 
laminar flame obtained for three different detailed chemical kinetics models of 
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realistic size. We assume for simplicity pressure to be constant and the di~us~o~~ of 
each species to be governed by a Fick’s law (see Ref. 125, p. 1 I]), neglecting therm& 
and pressure diffusion, viscosity, and radiative heat transfer. e use a fixed, uniform 
spatial mesh and choose a straightforward method of lines technique for f~a~ti~~a~ 
steps involving spatial derivatives, We remark, that for this simplified test probiem, 
fractional step methods need not necessarily be more favourable than alternative 
techniques based on fully coupled, implicit discretization formulas [14]? possibly 
combined with adaptive spatial gridding [ 8, 131. Our purpose is, however, restricted 
to improving the treatment of the chemistry steps only, using techniques which do not 
make use of simplifications of the geometry, the choice of spatial mesh: or the 
modeiing of fluid dynamics and transport phenomena. Hence, in particubar, our 
techniques are immediately applicable also to multidimensional cases, where the ~‘se 
of fully coupled, implicit discretization formulas may become cumbersome. 

We used in our test runs a version by Hindmarsh [! 11 of the stiff ODE solver by 
Gear (see Ref. [6, pp. 158-1681) and studied the effects of our ~~od~~~at~o~s of this 
ODE solver on the average CPU time per meshpoint consumed by the various parts 
of the chemistry step, and the resulting net effect on the overall ~omput~tio~a~ work 
per mesh point. The main results are contained in Table IV and show that a 
substantial reduction of the overall computational work, 3&-50% in our test cases 
increasing with the size of the kinetics model, can be gained at the cost of an increase 
of storage which is affordable and, in particular, remains bounded as rhe R~mbe~ of 
mesn points increases. 

2. THE TEST PROBLEM 

The partial differential equations of our test problem describe the one-dimensional 
flow of a chemically reacting multicomponent mixture of ideal gas where a Pick’s law 
is assumed to govern the diffusion of each species and where pressure variatio~s~ 
viscosity, radiative heat transfer, and thermal and pressure viscosity are assumed to 
be negligible (see Refs. [25, pp. 2-11; 14, p. 4131): 

y, + lly, = w + @*dYA ) P P 
(2.3) 

(2.4) 

Equations (2.1)-(2.4) express, respectively, the laws of conservation of mass, energy, 
and species and the ideal gas law. Here p (mass density of gas mixture), Y (mass’ 
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average velocity of gas mixture), T (temperature), and Y = (Y,,..., Y$’ (mass 
fractions of the species) are the unknown functions of x (space) and t (time). The 
remaining quantities in Eq. (2.1)-(2.4) are: 

PO 

RO 

Wi, i = l,..., N 

/I 

D, = diag(d, ,..., dN) 

h = h(T) 

C, = C,(T) = dh/dT 

pressure (assumed constant) 

universal gas constant 

molecular weights of the species 

thermal conductivity of mixture (assumed constant) 

diagonal matrix of binary diffusion coefficients of the 
species (assumed constant) 

vector of specific enthalpies per unit mass of the species 
(known as function of T (see Ref. [9, p. 321)) 

vector of specific heats at constant pressure of the 
species 

C, = C,(Y, 7’) = YT . C,(T) specific heat at constant pressure of gas mixture 

o=o(Y, T) rates of production of species by chemical reactions (see 
Eq. (3.1) below). 

The gas mixture is contained in a semi-infinite tube in x > 0, closed at x = 0 and is 
initially at rest with the temperature and species mass fraction gradients zero 
everywhere. The flame is ignited by transferring heat from an external source into the 
tube at x = 0, leading to the following initial and boundary conditions: 

T(x, 0) = To, x 2 0, 

w, 0) = y, 7 x > 0, w  

v(x, 0) = 0, x > 0, 

T,(O, t) = @V) - T(O, t)), t>o, 
Tx(m, t) = 0, t> 0, 
Y,(O, t) = Yx(coo: t) = 0, t > 0, 

u(O,t)=O, t>o. 

To and Y, in Eq. (2.5) are such that the mixture is initially at chemical quasi- 
equilibrium, o(Yo, To) z 0. The constant a and the function B(t) in Eqs. (2.6) are 
assumed known. The condition Y,(O, t) = 0 and ~(0, t) = 0 express the lack of 
diffusion and mass average velocities, respectively, at the closed end of the tube. 

In practice we replace x = co with x = L where L > 0 is sufficiently large and 
introduce mesh points (i Ax, j At), 0 ( i < N, = L/Ax, 0 < j, with associated approx- 
imate solution values Y{, Ti, u!, and pi. The values Y!+l, Ti+ ‘, u{+ ‘, and pi’ ’ are 
computed from Yi, T{, v{, p{, i = 0 ,..., N, by taking the following fractional steps in 
sequence : 
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1. ChemisQ step. Solve the N, + 1 systems of N + 1 ordinary di~ere~~i~~ 
equations 

dY 60, rl 
-z= p ’ 

dT h(T:)T w(Y, r) 
-g-=- p.Cp(Y{,7g ’ 

Po=R,.T.p. $ + 
k:I k 

(2.y) 

with initial values 

Y(jAt) = Y::, 

T(jAf) = r;, 
i = O,.‘., N,, 

over the time interval (j.t, (j + 1) . dr) to obtain 

,;+1.1 = Y((j + 1) 4 

T;’ I.’ = T((j + 1) At), 
i = Cl,..., iV,- (223) 

The species production rate function o(Y, T’) is described in greater detail in Eq. (3.2) 
below. 

2. Diffusion step. Solve the N linear tridiagonal systems of iV, + 1 ordinary 
differential equations 

dyi Dd Cd+1 +Pf)(yi+l -Yi)-@:Cp:-l)(Y~-Yi-~j 
-=. 
dt p; 2 Ax2 

f2.9) 

with Y-, = Y,, Yh,x+I = yN,-1,P-1=2Po-Pl,P,~~+l = 2pN, - pN,- 1, and with initial 
values 

Yi(j&) = Y;+ I,‘, i = 0 ,..., iY,, 

over the time interval (jdt, (j + 1) At) to obtain 

Yf’ I,’ = Y,((j + 1) At), i = Cl,..,, N,. (2.10) 

3. Heat conduction step. Solve the linear tridiagonal system of N.? + 1 ordinary 
differential equations 

d T, 1 -= 
dt CJYJ‘t’J, ,;+,.1, z I 

’ T,+,- 2Ti f Ti_, 
AX” 

t c,(T~+‘,‘)‘D,(Y~f:~2--Yi+:,‘) Ti+, _ TiMI{ 

2 Ax 2Ax \ 
[2,!i;> 
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with y.i+ 1.2 = y{+ 1.2 
-1 3 Yj+1,2=yi+L,2 

.y,+ 1 
TN +, = T, .  -,, 

N,-13 x ‘x T,-TT_,=2Axact. 
(S(t) - T,), and with initial values 

T,(jAt) = T;+‘+ i=O,...,N,, 

over the time interval (jdt, (j + 1) At) to obtain 

T;’ 1,2 = T,((j + 1) At), i = O,..., N,. 
(2.12) 

4. Convection step. Solve the N + 1 linear tridiagonal systems of N, + 1 ordinary 
differential equations 

&i “i+* -yi-, 
-=-vi 
dt 2Ax ’ 

dTi Ti+l-Ti_, 
i = O,..., N,, 

-z-v; 
dt 2Ax ’ 

withYNx+, =YNx--l, TNx+I = T,x--I (note that vi = 0), and with initial values 

Yi(j At) = Y;’ lT2, 

Ti(j At) = T;+ lq2, 
i = 0 ,..., N, , 

over the time interval (j At, (j + 1) At) to obtain 

Yitl = Yi((j + 1) At), 

T;+’ = T,((j + 1) At), 
i = O,..., N,. 

(2.13) 

(2.14) 

5. Mass continuity step. Compute pi+ ’ using the values Y{’ 1 and Ti+ ’ in (2.14) 
and the ideal gas law (2.4) and put 

pj+l _ PI 
I+’ -pj 

ti - At ’ 
i = O,..., N,. (2.15) 

Let $:“‘(x) be the cubic spline fitted to the N, + 1 values pit,” in (2.15) (with side 
conditions d2p”jj+ 1 1 (x)/dx2 = 0 at x = 0 and x = L) and then compute 

p’:‘+‘(x) dx. 

The truncation error of the above scheme is expected to be O(At + Ax’) as At, Ax -+ 0, 
in good agreement with computational results. The equations (2.9), (2.1 l), and (2.13) 
of the diffusion, heat conduction, and convection steps were treated by the implicit 
trapezoidal rule with stepsize At, the length of the fractional step. The above 
subsplitting into steps 2-5 and the associated discretization formulas and stepsize 
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strategies probably could be replaced by more effective choices; however, our main 
Interest is with the treatment of the Eqs. (2.7) of the chemistry step (see Section I). 

3. THE CHEMISTRY STEP 

The species production rate function w(Y, T> in the differential equations f2,7) Is of 
the form (see Ref. [25, pp. 2-41): 

oo(Y, T) = D&V”= - V”)(D&) z”’ - .Lqr;j) Z”“‘], (4, 8\ \-.c”,2 

where 

D,, = diag(W, . ...> WJtr) diagonal matrix of molecular weights of the species 

V’, v”: A4 x N matrices of (integer) stoichiometric coefficients for 
reactants and products respectively, (M = number of 
reactions.) 

&p?~ 4sln M X A4 diagonal matrices of reaction rate constants for 
forward and backward reactions, respectively. The diagonal 
elements of D,,(T) are of the form K,-,(q = 
Kofi m TPfi . exp(-Efi/Ro T), i = I,..., M, where A& aMfi are 
constants. Dkh(T) is defined similarly. 

= (Z, (.l.r z,y vector of concentrations (in moles per unit volume) of the K 
species, Zi =pYJWi, i= I ,,..: N. 

Z”’ vector of the M products ]Tzzl ZLik, i = I,..., M. Z’” is 
defined similarly. 

Some of the N species, such as nitrogen in our test examples, may occur only as 
“third bodies” in the reactions and thus give rise to zero rows in the matrix 
VT - Vr in Eq. (3.1). In such cases, we exclude the corresponding constant 
components when solving the system Eq. (2.7) numerically, thus reducing its dimen- 
sionality to NA C 1 where NA < hT is the number of remaining (non-inert) species, 
putting y = (Y, ,..., Y,, , T)T and defining f(y) accordingly, Eqs. (2.7) and (3,l) 
assume the normal form of an autonomous system of ordinary di~ere~tial eql~~at~o~s 

dY - = f(y). 
dt 

(3.2) 

Unless At, the time step of the fractional step algorithm, is chosen much srn~~ler 
than needed for accuracy, the product -Re A. . At will be much larger than ~lne 
(maybe lo3 or larger in our test examples) for some eigenvalues Z to the ~a~ob~a~ 
matrix Jr = J(y) = X/ay. Hence Eq. (3.2) must be treated by methods suitable for stiff 
ordinary differential equations. Our test runs were made using a version by 
Hindmarsh ] 1 I] of the widely used algorithm by Gear (see Ref. ES, pp. l~g-~~g]~ 
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with, however, the following modifications designed to make advantage of particular 
features of the chemistry step problem, cf. Section 1: 

(1) We subdivide the temperature range of interest into K subintervals by 
introducing constants T, ( T, < . .. < TK- i (we used K = 10 in our test runs) and 
reserve storage space for K real (NA + 1) X (NA + 1) matrices and K integer vectors 
with NA + 1 components. Whenever a Jacobian matrix is evaluated, we reduce it to 
Hessenberg form by stabilized elementary similarity transformations (see Refs. [24, 
p. 353; and 5]), i.e., we compute matrices P, L, and H such that 

J(y) = PLHL - ‘P=, (3.3) 

where P is a permutation matrix, the elements h, of H are zero for i > j + 1, and the 
elements I, of L are nonzero only for i = j = 1 or i > j > 1 with Iii = 1, 
i= 1 ,..., NA + 1. Furthermore, by the requirement that the number of atoms of each 
chemical element be conserved in each reaction 

rankJ=rankH<NA+ l-NE (3.4) 

independently of y, where NE is the number of different chemical elements appearing 
in the NA reacting species. In all our test examples, when choosing the permutation 
matrix P by the simple pivoting strategy used in Ref. [24, p. 3541, this rank 
deficiency of H showed by the last NE rows of H being zero to working accuracy, 
thus allowing for premature termination of the decomposition (3.3). 

The value of the temperature component of y in Eq. (3.3) will be in one of the 
temperature subintervals defined above, say the kth, and we store the matrix P and 
the matrices L and H into the kth of the reserved storage areas. Subsequently, 
whenever the temperature component of y in Eq. (3.2) is in the kth subinterval, we 
use these matrices P, L, and H by Eq. (3.3) as the approximate Jacobian matrix 
needed in the Newton-like corrector iterations updating P, L, and H by reevaluating 
and reducing J(y) only when corrector convergence becomes unacceptably slow. In 
all our test runs such updates, summed over all temperature intervals, occurred on the 
average less than once in every five initial value problems, thus keeping the overhead 
work for the decompositions (3.3) acceptably small (see Tables II-IV). 

The linear system of equations appearing in the corrector iterations is of the form 
shown in Ref. [6, pp. 216-2171, 

(I- up W(Y)) x = h (3.5) 

where h is the current step size, ag is a number dependent of the order p, and I is the 
identity matrix. By Eq. (3.3), Eq. (3.5) becomes 

PL(I-aphH)L-‘PTx=b (3.6) 

which can be solved by back substitutions after LU decomposition of only the 
(NA + 1 -NE) x (NA + 1 - NE) upper left corner of the Hessenberg matrix 
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I - a,hH (see the comment after Eq. (3.4)). The overhead work for this LU decom- 
position. which has to be redone whenever the product aP . h changes significantly, is 
thus roughly (NA + 1 - NE)2/2 operations to be compared to the roughly 
(NA $ lj3/3 operations needed for LU decomposition of Eq, (3.5) directly (here 
“operation” stands for one addition and one multiplication or division in floating 
point arithmetic). The back substitutions in Eq. (3.6) require roughly 3(NA + I)‘/2 
operations as compared to (NA + 1)2 in the direct LU-decomposition case. However, 
step/order changes requiring LU decomposition are sufficiently frequent to make the 
net gain substantial (see Tables III and IV). 

(2) We relax the stepsize selection strategy so that a step increase at order p is 
attempted whenever p steps have been taken with constant step size, as compared to 
p + 2 steps in the original strategy (see Ref. [ 111). We further permit step increase by 
up to a factor of 10” at all times (instead of only initially as in Ref. [ 1 1 ] )5 except for 
the first increase after a stepsize reduction. The risk of these modi~catio~s 
introducing unwanted error growth caused by too frequent stepsize changes [lp 7. 10, 
1 I] is expected to be small because the order is generally low due to the moderate 
accuracy requirements, the total number of integration steps per initial value problem 
is on the average very small, and the step size is as a rule non-decreasing in each 
initial value problem (cf. Refs. [ 1, p. 102; 10, pm 133 1). In our test runs: these 
modifications were found to reduce the average number of integration steps per initial 
value problem considerably (see Table III), mainly by using fewer steps in the n-au- 
Gents where in general the stepsize is initially several orders of magnitude smaller 
than the interval of integration. 

(3) We modify the prediction-correction scheme to avoid introducing possibly 
harmful negative species mass fraction values [4] by rounding or truncation errors in 
the following way: Let yp’ be the predicted solution vector computed by polynomial 
extrapoIation. Then we use y” = (y:,..., Y:.+~) as starting point for the corrector 
iterations, where 

JjP=max{YP,O}, i = I,..., NA $ 1, ;3.7) 

and subsequently adjust any negative components occurring in y to zero after each 
corrector iteration. We do, however, use the actual predicted value yPT when 
computing the accumulated correction vector needed for the local error estimate and 
for updating the Nordsieck matrix after corrector convergence. We note that. unlike 
the original scheme, this modified corrector procedure no longer necessarily 
conserves global linear invariants of the solution, such as eiement masses, to within 
rounding error tolerance independent of truncation errors from the time discretization 
and the finite number of corrector iterations. However, the local errors that may 
occur in such linear invariants are still within the requested local error tolerance 
which, in principle, is quite satisfactory. Furthermore, it can in fact be shown that our 
corrector procedure may accumulate error (other than rounding error) in iinear 
invariants to (3.2) only when negative components happen to be present in y after the 
last corrector iteration preceding corrector convergence in an accepted step. In our 
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test runs, when using the predictor (3.7), negative corrected y-components occurred 
only occasionally and the global error of the linear invariants was always several 
orders of magnitude below the local error tolerance. 

4. COMPUTATIONAL RESULTS 

Our test runs of the initial boundary value problems (2.1)-(2.6) were performed 
with three different models of the chemical kinetics of the gas mixture. Table I shows 
the source references used for obtaining the details of these models, together with the 
number of species and reactions appearing in each model. The entries of the last 
column of Table I assume that the formalism of Eq. (3.1) has been extended so as to 
allow the sum of all species concentrations, Z,, , = CT=, Zi, to appear as a third 
body in the reactions. In the actual coding of Eq. (3.1) we include this extension by 
augmenting the matrices V’ and V’ (which are stored row-wise in compact form) by 
identical (N+ 1)th columns. We note that this extension is done for the practical 
purpose of reducing computational work and storage requirements only, since such 
“third body” reactions could equivalently be split into N simpler reactions covered by 
the formalism of (3.1). 

The thermodynamic functions h(T) and C,(T) = dh/dT were given as piecewise 
polynomials in T (see Ref. [9, p. 321). The constant pressure p,, was chosen to be 
1.013 x IO6 dyn/cm’ (=l atm). The choice of values for the thermal conductivity 1 
and the diffusion coefftcients d r,..., d, is not crucial for our results, and we simply put 
d, = . . . = d,, = d, choosing the constants d (5 cm’/sec) and I (5.103 dyn/sec) so as to 
obtain burning velocities, species concentration profiles, and flame thicknesses 
roughly comparable to those in Refs. [15, 221 in the steady-state flame. The function 
19(t) in the boundary condition Eq. (2.6) for the temperature was chosen to be 

(4.1) 

with t, = 10e4 set, T, = 300 K, T, = 2400 K (for the Hz-air model) and 2700 K (for 
the CH,-air models). The constant a was set to 200 cm-’ in all cases. The boundary 

TABLE1 

Source References and Dimensionality Data for Kinetics Models Used in Test Runs 

Test Case 
No. 

& No. of 
Kinetics Model Species, 

[Refs.] N 

No. of 
Reacting 

Species, NA 

No. of 
Reactions, 

M 

1 Hz--air [2, 15, 171 8 7 13 
2 CH,-air [20,23] 19 18 56 
3 CH,-air [21,23] 26 25 86 
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conditions to the right were given at L = 1 cm and the stepsizes dx = 5 x 10-j cm, 
Al = 2.5 x 10P6 set were found to give sufficient accuracy for our purposes. At these 
stepsizes the bounds At . /IS,/\, 5 2, At iIS,// 2 1.8, and At . /jS,lj, 5 0.0 hold in all 
test cases, where S,, S,, and S, are the tridiagonal matrices in Eq. (2.9j, (2.11 j: and 
(2.13), respectively. The time interval was 0 < t GO.5 msec in the Hz-air case and 
0 < t < 0.6 msec in the CH,-air cases, corresponding roughly to three times the 
length of the flame ignition period. In all cases, the local error bound for the initial 
value problems, Eq. (2.7), in the chemistry step was chosen to E = 10-j, based on 
repeated runs with successively decreasing E until visual convergence of graphs of 
temperature, flow velocity, and species concentration profiles was obtained. The norm 
of the locai error is estimated in Ref. [ 111 by 

NA+I 

I( local error (jz = /I, 
i=l 

(4.2) 

where ,8, is a number dependent of the order p, e = je,,..., eNA+ 1)T is the difference 
between the corrected and predicted solution values, and ~~~~,r,...~ yjmax,NA+l are 
weights to be chosen by the user. We update these weights after each integration step 
in Eq. (3.2) to be the maximum values of yr :...) yNAs I in any solution to Eq. (3.2) 
computed since i = 0. 

In Table II, we list some of then main subalgorithms needed for solving the initial 
value problems of the chemistry step, and show the CPU times required on a ~~~it~l 
VAX 1 l/780 computer for executing each of these once. 

Table III shows the average numbers of integration steps, function evaluations, aad 

TABLE II 

CPU Times (in Milliseconds) per Execution of Some Aigorithms 
Needed in the Chemistry Step 

Case 1 Case 2 Case 3 

Evaluation of f(y) in Eqs. (3.2), (2.7), (3.1) 

Evatuation of J(y) = X//ay 

LU decomposition of I - a,hJ(y) in Eq. (3.5) 

Solution of Eq. (3.5) using LU factors 

Reduction of J(y) to Hessenberg form as in 
Eq. (3.3) 

2.7 3.2 13.8 

12.2 54.3 02.2 

5.5 41.3 112 

i.3 5.8 1c.s 

?.7 87.5 215 

LU decomposition of I - a,hH in Eq. (3.6) 
Solution of Eq. (3.6) using LU factors 

Evaluation of h(Tj), C,(T{), and C, in 
Eqs. (2.2), (2.3), (2.7) 

Evaluation of D&T:) and Dkb(Tj) in 
Eq. (3.1) 

- 

1.4 6.4 12.3 

1.8 9.4 1FJ.c 

1.2 2.8 k.6 

2.2 10.0 15.4 



TA
BL

E 
III

 

Av
er

ag
e 

Nu
m

be
r 

of
 In

te
gr

at
io

n 
St

ep
s,

 F
un

ct
io

n 
Ev

al
ua

tio
ns

, 
an

d 
M

at
rix

 
Ha

nd
lin

g 
O

pe
ra

tio
ns

 
pe

r 
In

iti
al

 
Va

lu
e 

Pr
ob

le
m

 
(2

.7
), 

(3
.2

) 
Ba

se
d 

on
 T

ot
al

 
W

or
k 

in
 0

 <
 t

 <
 t

,,,
 

(F
irs

t 
Ro

w 
in

 R
ow

 
G

ro
up

s)
 

an
d 

in
 0

 Q
 t

 <
 f

av
Z (

Se
co

nd
 

Ro
w 

in
 R

ow
 

G
ro

up
s)

 

In
te

gr
at

io
n 

st
ep

s 

Ev
al

ua
tio

ns
 

of
 f

(y
) 

Ev
al

ua
tio

ns
 

of
 J

(y
) 

C
as

e 
1 

C
as

e 
2 

C
as

e 
3 

1 a
v,

 = 
0.

2 
m

se
c 

t a
v,

 = 
0.

2 
m

se
c 

t a
v1

 = 
0.

2 
m

se
c 

t a
vz

 = 
0.

5 
m

se
c 

f a
v2

 = 
0.

6 
m

se
c 

t a
vz

 = 
0.

6 
m

se
c 

O
rig

in
al

 
M

od
ifie

d 
O

rig
in

al
 

M
od

ifie
d 

O
rig

in
al

 
M

od
ifie

d 
O

DE
 

So
lv

er
 

O
DE

 
So

lv
er

 
O

DE
 

So
lv

er
 

O
DE

 
So

lv
er

 
O

DE
 

So
lv

er
 

O
DE

 
So

lv
er

 
F $ 

13
.3

 
10

.3
 

14
.0

 
11

.2
 

16
.9

 
10

.7
 

g 
8.

9 
1.

0 
12

.8
 

9.
8 

17
.5

 
10

.5
 

s 

19
.3

 
18

.1
 

18
.9

 
18

.2
 

21
.6

 
17

.0
 

: 

14
.0

 
11

.9
 

16
.4

 
14

.9
 

21
.7

 
16

.3
 

s 
4.

7 
0.

19
 

4.
5 

0.
21

 
5.

6 
0.

20
 

z 
3.

9 
0.

08
 

4.
5 

0.
16

 
5.

9 
0.

20
 

s 

R
ed

uc
tio

ns
 

of
 J

(y
) 

to
 H

es
se

nb
er

g 
fo

rm
 

- 
0.

19
 

- 
0.

21
 

- 
0.

20
 

- 
0.

08
 

- 
0.

16
 

- 
0.

20
 

LU
 

de
co

m
po

sit
io

ns
 

4.
7 

7.
1 

4.
5 

7.
2 

5.
6 

7.
3 

3.
9 

5.
2 

4.
5 

7.
7 

5.
9 

7.
7 

So
lu

tio
ns

 
of

 d
ec

om
po

se
d 

lin
ea

r 
sy

st
em

 
18

.3
 

17
.1

 
17

.9
 

17
.2

 
20

.6
 

16
.0

 
13

.0
 

10
.9

 
15

.4
 

13
.9

 
20

.7
 

15
.3

 



TA
BL

E 
IV

 

Av
er

ag
e 

C
PU

 
Ti

m
es

 
pe

r 
M

es
h 

Po
in

t 
an

d 
Fr

ac
tio

na
l 

St
ep

 C
yc

le
, 

Ba
se

d 
01

1 A
ve

ra
ge

 
W

or
k 

as
 S

ho
wn

 
in

 T
ab

le 
3 

-_
__

s_
__

 
_-

~-
~-

_~
~ 

---
 

- 
C

as
e 

1 
C

as
e 

2 
C

as
e 

3 
__

_-
_ 

~_
__

 
-_

_~
__

_-
__

 
O

rig
in

al
 

M
od

ifie
d 

O
rig

in
al

 
M

od
ifie

d 
O

rig
in

al
 

M
od

ifie
d 

O
DE

 
So

lv
er

 
O

DE
 

So
lv

er
 

O
DE

 
So

lv
er

 
O

DE
 

So
lv

er
 

O
DE

 
So

lv
er

 
O

DE
 

So
lv

er
 

__
-_

_ 
__

__
_ 

Ev
al

ua
tio

n 
of

 f
(y

) 
52

 
49

 
17

4 
16

7 
29

8 
23

5 
38

 
32

 
15

1 
13

7 
29

9 
22

5 

So
lu

tio
n 

of
 d

ec
om

po
se

d 
lin

ea
r 

sy
st

em
 

24
 

31
 

10
4 

16
2 

21
8 

28
9 

17
 

20
 

89
 

13
1 

22
0 

27
5 

Ev
al

ua
tio

n 
of

 J
(y

) 
57

 
2 

24
5 

12
 

51
5 

18
 

48
 

1 
24

4 
9 

54
4 

18
 

M
at

rix
 

de
co

m
po

sit
io

n 
an

d 
re

du
ct

io
n 

26
 

11
 

21
3 

65
 

62
6 

13
3 

21
 

8 
21

4 
63

 
66

2 
13

8 

Ev
al

ua
tio

n 
of

 p
ar

am
et

er
s 

3 
3 

13
 

13
 

20
 

20
 

h,
 C

,, 
D

,,,
 a

nd
 D

kb
 

3 
3 

13
 

13
 

20
 

20
 

Ex
ec

ut
io

n 
of

 O
DE

 
so

lv
er

 a
nd

 
50

 
53

 
16

9 
16

2 
22

8 
19

8 
ot

he
r 

ov
er

he
ad

 
3!

 
32

 
12

8 
13

2 
15

6 
19

6 
__

.--
_-

__
- 

__
-~

-. 
__

-- 
---

---
._

_ 
-_

_.
 

---
---

__
. 

__
l_

_-
_-

l_
- 

C
he

m
is

try
 

st
ep

, t
ot

al
 

21
2 

14
9 

91
8 

58
1 

19
05

 
89

3 
15

8 
96

 
83

9 
48

8 
19

01
 

87
2 

O
th

er
 

fra
ct

io
na

l 
st

ep
s 

5 
5 

12
 

12
 

37
 

31
 

5 
5 

12
 

12
 

31
 

31
 

,4
11

 fra
ct

io
na

l 
st

ep
s 

21
’1

 
15

4 
Y3

0 
59

3 
19

42
 

93
0 

16
3 

10
1 

85
1 

50
0 

19
38

 
90

9 



180 KARASALOAND KURYLO 

matrix handling operations per mesh point, based on the total work spent in the 
chemistry steps in 0 < c < t,, , for two different values of t,, for each test case. The 
entries in the “modified ODE solver” columns were obtained using the algorithm in 
Ref. [ 111 with the three modifications described in Section 3 above. The entries under 
“original ODE solver” are shown for comparison and were obtained using the 
original algorithm of Ref. [ 1 l] with, however, the prediction-correction scheme 
modified as described in Section 3. Our attempts to use Ref. [ 1 l] without any 
modification of this kind failed in all three cases at the chosen local error tolerance 
because of introduction of negative mass fraction values leading eventually to 
instability. 

The entries in row groups 7 and 8 of Table IV are the average CPU times in 
milliseconds per mesh point and fractional step cycle spent in the chemistry step and 
in all other fractional steps, respectively. The entries in row group 9 are the sums of 
corresponding entries .in row groups 7 and 8 and hence show the average CPU time 
required per meshpoint and fractional step cycle by the overall fractional step 
algorithm. Row groups 1-6 show a breakdown of the entries in row group 7 into the 
average CPU times per mesh point spent in the main subalgorithms of the chemistry 
step. 

We remark, that the ODE solvers were actually applied only at mesh points where 
the temperature exceeded T,, + 0.5 K (see Eq. (2.5)), otherwise approximating the 
solution of (3.2) to be constant. The averages shown in Tables III and IV are based 
on the subset of mesh points where the ODE solvers were applied (i.e., mesh points in 
and behind the flame), and the CPU times for other fractional steps as shown in 
Table IV were normalized accordingly. Further, the first t,, value was chosen to 
coincide roughly with the end of the flame ignition period (0.2 msec in all cases), and 
hence the entries in the first rows in the row groups in Tables III and IV are averages 
based on work at mesh points with rapid chemistry only. At the second t,, value 
(0.5 msec in case 1 and 0.6 msec in cases 2 and 3), the average work per mesh point 
has decreased due to the growing number of mesh points in the zone of slow- 
chemistry combustion products behind the flame. This decrease would, of course, 
vanish if the number of such mesh points were limited by adaptive gridding 
techniques, for which case the averages at the first t,, value should be more represen- 
tative. 

5. CONCLUDING REMARKS 

We stress, first, the importance of preventing instability at relaxed local error 
tolerances in the chemistry step by some simple device like our modification 3 (see 
Section 3). In addition, Tables III and IV indicate the following effects due to our 
modifications 1 and 2 in the test cases: 

(1) Roughly 85% reduction of the CPU time spent on Jacobian evaluations 
and matrix decompositions (due to modification 1). 
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(2) Reduction of the number of integration steps by 2@-@% (modification 2) 
counteracted, however, by perhaps l&25% slower corrector convergence rate and 
more time-consuming backsolves (modification l), resulting in a net change of the 
CPU time spent on function evaluations and solutions of factorized linear systems in 
the range -3% to ~12%. 

(3) Up to 25% increase of the CPU time spent in the ODE solver for step size 
and order selection and other overhead (modification 2). 

The net effect of modifications 1 and 2 is a reduction of the overall CPU time for 
the fractionai step algorithm by 29-53%, increasing with the size of the ~herni~a~ 
kinetics model as the overhead for Jacobian evaluation and matrix decorn~os~t~~~ 
grows dominant. The techniques used to gain these reductions are restricted to the 
handling of the ODE’s of the chemistry step using information at the current mesh 
point only, and are thus immediately applicable to operator splitting methods for 
more general cases of reacting gas flow, including mult~dimens~o~a~ cases with more 
detailed modeling of the fluid dynamics or the transport processes and with more 
sophisticated spatial gridding techniques. 

Our choice of strategy for selecting and storing the Jacobian matrices (see 
modification I in Section 3) by using the value of the temperature only was motivates 
by the strongly nonlinear form of the reaction rate constants in Eq. (3.1) as functiorts 
of temperature. While this strategy could be apphed in general, more effticient 
strategies using, in addition, local species concentration values and more detailed a 
priori knowledge of the overall flow field, could probably be found in any part~~~~ar 
case. For example, in a diffusion flame, a certain temperature range may OCCUF ai 

multiple space iocations with essentially different species ~on~e~trat~o~ vectors ‘(see, 
e.g., Rei: [!5? pi 2538]), and there the above strategy would probably require 
reevaluation of Jacobians associated with such a temperature range at least once per 
chemistry step. A slightly more elaborate strategy, probably better suited to this 
situation, could then be, e.g., to choose between two sets of temperature subinterva3s 
based on the local ratio between the fuel and oxidizer ~o~ce~trat~o~s. 
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